ASSIGNMENT 2

1

Greatest Lower Bound

Let $S \subseteq \mathbb{R}$. Then β is called the *greatest lower bound* of S if

- 1. β is a lower bound of S.
- 2. β is the largest such lower bound. That is, if $\gamma \le x$ for every $x \in S$, then $\gamma \le \beta$.

We write

$$\beta = glb(S)$$
.

Note: The greatest lower bound is often called the *infimum* of S and is denoted by inf(S).

Since $n \ge 0$, we can multiply both sides of this inequality with n and it will still hold

₩ 0 < 1

2. We will take the contrapositive and prove it by contradiction.

$$\gamma > 0 \Rightarrow \exists s \in S: \gamma < s \leftarrow contrapositive of 2.$$

SFAC ASES: pcs

By Archimidean Property IneM: n>1

Which forms a contradiction : 3 s e S: Y < s

: inf
$$S=0$$

 $\text{Show that for } \varepsilon > 0 \text{, there exists } n_{\varepsilon} \in \mathbb{N} \text{ such that } n_{\varepsilon} - 1 \leq \varepsilon \leq n_{\varepsilon}.$

The smallest value of $N \in \mathbb{N} = 1$:. smallest value of $N \in \mathbb{N}$, $N \in \mathbb{N} = 0$

$$\forall \epsilon > 0 \quad \exists \quad M \in -1 \leq \epsilon$$

trivial since lover bound

of $n_{\epsilon} - 1$ is 0

If ε is an Natural Number, we can take $n_{\varepsilon} = \varepsilon$ Since $n_{\varepsilon} - 1 < n_{\varepsilon}$

By the Archimidean Property, $\varepsilon \in \mathbb{R} \Rightarrow \exists n_{\varepsilon} \in \mathbb{N} : \varepsilon < n_{\varepsilon}$

Let S= Ene EN: ne>E3

Since SSN, S must be well ordered

Let the smallest element of S be so

≥ So -1 < ε

if not $S_0-1 \le E$. This forms a contradiction ($S_0 = 1$ is trivial and has been proved above)

:. Y E>O 3 nE EN : NE-1 (E K NE

Prove that for any real numbers x and y with x < y, there exists a rational number $r \in \mathbb{Q}$ such that x < r < y.

We can assume $\chi > 0$ L if $\chi \leqslant 0$ there are 2 passibilities

y>0, then r=0 is a trivial solution

 $y \leqslant 0$, then we can multiply all sides of the inequality by -1 , and we get $-y < -r < -\chi$ where $-\chi$, -y, -r > 0

We can take new $x_0 = -y$, $y_0 = -x$, $r_0 = -r$ $x_0 < r_0 < y_0$

Showing I roe @ proves IreQ: x<r<y

x>0 > r>0

:. we can write r as $\frac{a}{b}$ where $a, b \in \mathbb{N}$

2 < a < y

since x < y, Let $y = x + \varepsilon$, $\varepsilon > 0$

 $\alpha < \frac{a}{b} < y \Rightarrow b\alpha < a < b(\alpha + \epsilon)$

baka is arbitrary because of the Archimidean Property

 $\exists b \in \mathbb{N} : b \cdot \varepsilon > 2 \Leftrightarrow b > \frac{2}{\varepsilon}$

Due to the Archimidean Property, we know there exists a b that satisfies this.

bx < q < bx + 2

We know there exists an $a = \lfloor b \cdot x \rfloor + 1$ that satisfies this.

2.

Let $\{a_n\}$ be a bounded sequence of real numbers and let $s = \sup\{a_n : n \in \mathbb{N}\}$. Show that if $s \notin \{a_n : n \in \mathbb{N}\}$ then there is a subsequence of $\{a_n\}$ that converges to s.

Let B be a subsequence of Ean's such that

B= {ak, kenst. ak > an, then s.t. nck}

B isn't empty a, belongs to it (trivial)

B is infinite. We can prove this using contradiction

If B is finite, let its largest element be bo

bo E {an: n E IN) (trivial since it's a subsequence)

If B is finite ⇒ Zan, n∈IN s.t. an>bo

This would mean sup Ean's = bo, but that contradicts

sæ lan J. .. B is infinite.

B is non decreasing (trivial the N_{th} element by definition is) larger than the elements before it). By MCT

B converges to sup(B) = s

where
$$a_n = -2$$
 if $n = 1 \pmod{3}$
 $a_n = 0$ if $n = 2 \pmod{3}$
 $a_n = 3$ if $n = 0 \pmod{3}$

The subsequences B, M and P as defined below converge to -2, 0, 3 respectively

Show that every contractive sequence is a Cauchy sequence. (and hence, convergent)

Cauchy Sequence

We say that a sequence $\{a_n\}$ is *Cauchy* if for every $\epsilon > 0$, there exists some $N \in \mathbb{N}$ such that if $m, n \geq N$, then $|a_n - a_m| < \epsilon$.

$$|a_{n+2} - a_{n+1}| \le c |a_{n+1} - a_n| \le c^2 |a_n - a_{n-1}| \le \cdots$$

$$|a_n - a_m| = |a_n - a_{n-1} + a_{n-1} - a_{n-2} - a_{m+1} - a_m|$$

By
$$\Delta$$
 ineq.

$$\leq C^{n-2} |a_2-a_1| + C^{n-1} |a_2-a_1| + \cdots + C^{n-1} |a_2-a_1|$$

$$= C^{m-1} \left(\frac{1 - C^{m-n}}{1 - C} \right) |a_2 - a_1|$$

$$\leq C^{m-1}\left(\frac{1}{1-C}\right)|\alpha_2-\alpha_1|$$
 (Since $0)$

Let
$$\beta$$
 be a constant = $\frac{19.-9.1}{1-C}$

Since
$$\mathcal{L}$$
 $C^{m-1} = 0$ (trivial since $0 < C < 1$)

$$\forall \ \epsilon > 0 \ \exists \ \mathsf{M} \in \mathsf{IN} : \ \beta \cdot \mathsf{C}^{\mathsf{M}-1} < \epsilon \ (\mathsf{take} \ \mathsf{N} > \mathsf{log}_{\mathsf{C}} \frac{\epsilon}{\beta} + 1)$$

- .. Every contractive seq. is Cauchy.
- Let $f_1 = f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$, $n \ge 3$ be the Fibonacci sequence. The first few terms of the sequence are $\{1, 1, 2, 3, 5, 8, 13, 21, \dots\}$. Now define

$$a_n = \frac{f_n}{f_{n+1}}.$$

Show that $\{a_n\}$ satisfies the recursive relation $a_1=1$ and $a_n=\frac{1}{1+a_{n-1}}$ for all $n\geq 2$, and then prove that $\frac{1}{2}\leq a_n\leq 1$.

We will prove this relation using induction.

Base Case
$$a_1 = 1 \land \frac{f_1}{f_2} = \frac{1}{1} = 1 \therefore a_1 = \frac{f_1}{f_2}$$

Let
$$a_k = \frac{f_k}{f_{k+1}}$$

$$a_{k+1} = \frac{1}{1 + a_k} = \frac{1}{1 + \frac{f_k}{f_{k+1}}} = \frac{f_{k+1}}{f_k + f_{k+1}} = \frac{f_{k+1}}{f_{k+2}}$$

.. By Induction
$$a_n = \frac{f_n}{f_{n+1}}$$

To prove that
$$\frac{1}{2} \leqslant a_1 \leqslant 1$$

$$a_1 = 1, \quad a_2 = \frac{1}{2} \quad \text{(Base Case)}$$
if $\frac{1}{2} \leqslant a_k \leqslant 1$

$$a_{k+1} = \frac{1}{1+a_k}, \text{ since } \frac{1}{2} \leqslant a_k \leqslant 1$$

$$\Rightarrow \frac{3}{2} \leqslant a_{k+1} \leqslant 2$$

$$\Rightarrow \frac{1}{2} \leqslant \frac{1}{a_{k+1}} \leqslant \frac{2}{3} \leqslant 1$$
Hence by Induction $\frac{1}{2} \leqslant a_n \leqslant 1 \quad \forall n \in \mathbb{N}$

Show that $\{a_n\}$ is contractive, and find all possible values of L such that $a_n \to L$.

$$|a_{n+1} - a_n| = \frac{1}{|+a_n|} - \frac{1}{|+a_{n-1}|} = \frac{|a_{n-1} - a_n|}{(|+a_n|)(|+a_{n-1}|)}$$

$$= \frac{|a_n - a_{n-1}|}{(|+a_n|)(|+a_{n-1}|)}$$

Since
$$(1+\alpha_n)(1+\alpha_{n-1})$$
 >0 and $1-\alpha = 1\alpha 1$

$$a_n$$
 , $a_{n-1} \gg \frac{1}{2}$

$$\frac{|a_{n-1} - a_n|}{(|+a_n|)(|+a_{n-1}|)} \le \frac{|a_n - a_{n-1}|}{\frac{3}{2} \cdot \frac{3}{2}} = \frac{4}{9} |a_n - a_{n-1}|$$

:.
$$|a_{n+1} - a_n| \leqslant \frac{4}{9} |a_n - a_{n-1}|$$

$$L = \frac{1}{1+L} \Rightarrow \frac{1}{2} + L = 1 \Rightarrow \frac{2}{1+L-1} = 0$$

$$L = -\frac{1 \pm \sqrt{5}}{2}$$
 are possible solutions but
we can discard $-\frac{1-\sqrt{5}}{2}$ since

$$\frac{1}{2} \leqslant a_n \leqslant 1$$

4.

i) Prove that the sequences $\{s_n\}$ and $\{t_n\}$ converge where $s_n = \sup\{x_k : k \ge n\}$ and $t_n = \inf\{x_k : k \ge n\}$.

Firstly we'll prove {Sny is non-increasing by contradiction

SFAC 3 m, k & M < K ^ Sm < Sk

 \Rightarrow S_m $> \chi_{L}: L>m$ $^{\wedge}$ S_k $> \chi_{L}: L>k$ (Lem)

Note $S_m > \chi_l : l > m \land m < k \Rightarrow S_m > \chi_l : l > k$

- ... Sm is an upper bound of $\{x_k: k>n\}$ but since $S_k = \sup\{x_k: k>n\} \land S_m \leq S_k$ we get a contradiction
- .. Lsn y is non-increasing

 $\inf \{x_n\} = I = t_1$ and $\sup \{x_n\} = S = s_1$

 $I \leqslant S_n \leqslant S_i$ \forall $N \in \mathbb{N}$ $\left(\begin{array}{ccc} \text{trivial since } & \text{sup } \{S_n\} = S_i = S \\ \text{and } & I \leqslant \chi_n \; \forall \; n \in \mathbb{N} \end{array}\right)$

Since Sn is bounded and non-increasing, by MCT

& Sny converges to inf (Sn3)

Note: Now that we have proved that & Sny converges we can similarly prove the same for & tny by negating

all χ_n and showing the same or showing that $% t_n = \chi_n = \chi_n$

Find \limsup and \liminf of the sequence $a_n = \frac{3(-1)^n n^2}{n^2 - n + 1}$.

For
$$a_n = \frac{3 \cdot (-1)^n n^2}{n^2 \cdot n + 1}$$
, $a_n < 0$ when n is odd and $n > 0$ when n is even

There is always another bigger n that happens to be odd/even. Since all an where n is even are bigger than all an where n is odd.

.. Sn ≠ ak if k is odd tn ≠ ak if k is even

 $de \sup_{N\to\infty} \{a_k : k > N \} = \inf \{S_N \}$

Since & Sny cannot be an odd, we can write it as

Lt sup $a_{2k}: k > \frac{n}{2}$, $n, k \in \mathbb{N}$

we can see that (Sny is decreasing.

.. Lt sup
$$\{a_k : k > n\} = Lt$$

$$\frac{3 \cdot n^2}{n^2 - n} + 1$$
(Note $(-1)^h = 1$)
if n is even

Similarly we can show that

Let inf
$$\{a_k: k > n\} = Let -3 \cdot n^2 = -3$$

$$n^2 - n + 1 \qquad \text{(trivial)}$$

More generally

At sup =
$$a_2[x\pm 1]$$
 and At inf = $a_2[x\pm 1]-1$
even terms an odd terms an a_1 increasing, ... inf = a_1 for a_1 smallest even a_2 Ctrivial) smallest odd a_2

Show that if $\{a_n\}$ and $\{b_n\}$ are bounded sequences, then

$$\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n.$$

Give an example in which two sides are not equal.

Let
$$\limsup a_n = \alpha n$$
, $\limsup b_n = \beta n$

By definition $\alpha n \geqslant a_{k_1} \land \beta n \geqslant b_{k_2} \forall k_1 \geqslant n$
 $k_2 \geqslant n$
 $\Rightarrow a_{k_1} + b_{k_2} \langle \alpha n + \beta n \rangle$

At sup $(a_n + b_n) = At sup \{a_k + b_k, k > n\}$ $a_k + b_k \text{ is } a \text{ case of } a_{k_1} + b_{k_2} \text{ where } k_1 = k_2$ $\therefore a_{k_1} + b_{k_2} \langle x_n + b_n \rangle + At \sup (a_n + b_n) \langle At \sup a_n + At \sup b_n \rangle$ The equality of the two sides doesn't hold when one seq. is increasing and the other is decreasing.

for eg. &an = h Ynethy and &bn = -h Ynethy

dan + bn = 0 Ynethy >> Ltsup (an + bn) = 0

But It sup an = an, lt sup br = 0

Their sum is always greater than O (trivial) (unless $n \rightarrow \infty$)

Prove that if the series
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n\to\infty} a_n = 0$.

We don't can what it exists

 $\sum_{n=1}^{\infty} a_n$ converges \therefore $\coprod_{k\to\infty} \sum_{n=1}^{k} a_n = S$

$$\sum_{n=1}^{k} a_n = \sum_{n=1}^{k-1} a_n + a_k$$

$$\mathcal{L}_{k\to\infty} \sum_{n=1}^{k} a_n = S = \mathcal{L}_{k\to\infty} \sum_{n=1}^{k-1} (a_n + a_k) \Rightarrow S = S + \mathcal{L}_{k\to\infty} a_n$$

 $\ddot{\mu}$) Determine whether the series $\sum_{n=1}^{\infty} \cos(\pi n)$ converges or diverges. If it converges, find the limit, if not, justify your answer.

$$COS(TIN)$$
 $\begin{cases} 1, when n is even \\ -1, when n is odd \end{cases}$

$$(-1)^n$$
 has the same piecewise definition for $n \in \mathbb{N}$

.. if we prove
$$\sum_{n=1}^{\infty} (-1)^n$$
 diverges that implies

that
$$\sum_{n=1}^{\infty} \cos(\pi n)$$
 also diverges.

$$\sum_{n=1}^{\infty} \cos (\pi n) = \sum_{n=1}^{\infty} (-1)^n = S_h$$

$$\sum_{N=1}^{2k+1} (-1)^{N} = (-1) + \sum_{N=1}^{k} (-1) + \sum_{N=1}^{k} (1)$$

$$= -(+0 = -)$$

$$\sum_{N=1}^{2k} (-1)^{N} = \sum_{N=1}^{k} (-1) + \sum_{N=1}^{k} (1) = 0$$

$$\therefore S_{k} = \begin{cases} 0 & \text{if } k \text{ is even} \\ -1 & \text{if } k \text{ is odd} \end{cases}$$

:
$$\{S_K\}$$
 diverges $\rightarrow \sum_{n=1}^{\infty} (-1)^n$ diverges $\rightarrow \sum_{n=1}^{\infty} \cos(\pi n)$ diverges

Let $r \in \mathbb{R}$ be such that |r| < 1. The series $\sum_{n=0}^{\infty} r^n$ is called the geometric series.

Prove that $S_n = \frac{1-r^{n+1}}{1-r}$, conclude that $\sum_{n=0}^{\infty} r^n$ converges and find the sum of the geometric series.

$$S_{k} = \sum_{N=0}^{k} \gamma^{N}, \qquad S_{k} \cdot \gamma = \sum_{N=0}^{k} \gamma^{N+1} = \sum_{N=1}^{k+1} \gamma^{N}$$

$$S_{k} \cdot \gamma - S_{k} = \sum_{N=0}^{k+1} \gamma^{N} + \sum_{N=0}^{k} \gamma^{N} \Rightarrow S_{k} (\gamma - 1) = \gamma^{k+1} - \gamma^{0}$$

$$\Rightarrow S_{K} = \frac{r^{k+1}-1}{r-1} \cdot \frac{-1}{-1} = \frac{1-r^{k+1}}{1-r}$$

We can show that r < 111 implies that $(S_n)^y$ is contractive \rightarrow Cauchy \rightarrow converges

$$S_{K+1} - S_{K} = \sum_{N=0}^{k+1} r^{N} - \sum_{N=0}^{k} r^{N} = r^{k+1} = r \cdot r^{k}$$

$$S_{K} - S_{K-1} = \sum_{N=0}^{k} r^{N} - \sum_{N=0}^{k-1} r^{N} = r^{k}$$

$$S_{k+1} - S_{k} = \gamma \cdot (S_{k} - S_{k-1})$$

Taking abs value on both sides

$$|S_{k+1} - S_k| = |r(S_k - S_{k-1})| = |r| \cdot |S_k - S_{k-1}|$$

Let
$$C = |r|; |S_{k+1} - S_{k}| \leq C|S_{k} - S_{k-1}|$$

From (i) this implies
$$L + r^n = 0$$
, $L + r^{n+1} = 0$

$$dt S_{N} = dt \frac{1 - r^{n+1}}{1 - r} = \frac{1 - dt r^{n-1}}{1 - r} = \frac{1 - 0}{1 - r}$$

$$=\frac{1}{1-r}=S$$

$$\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1}$$

First we'll try to plug in 1

we get $\frac{|^2-|+|}{|+|} = \frac{1}{2}$. Since this function is continuous at x=1, limit should be $\frac{1}{2}$

We will confirm using the ε -8 definition

Given ε >0 \rightarrow P.T. \exists δ >0 : $O(|x-1|) < \delta$ \Rightarrow $O(|x-1|) < \delta$ \Rightarrow $O(|x-1|) < \delta$ $|f(x) - \frac{1}{2}| = \left|\frac{\chi^2 - \chi + 1}{\chi + 1} - \frac{1}{2}\right| = \left|\frac{(\chi - 1)(2\chi - 1)}{(\chi + 1)}\right|$ $= |\chi - 1| \cdot \left|\frac{2\chi - 1}{\chi + 1}\right| = |\chi - 1| \cdot \left|\frac{2\chi - 1}{\chi + 1}\right|$

Let's take $S = \frac{1}{2} \Rightarrow 0 < x < 1 \Rightarrow$ $\Rightarrow 1 < x + 1 < 2 \Rightarrow \frac{1}{2} < \frac{1}{x + 1} < 1$ $\Rightarrow -3 < \frac{-3}{x + 1} < -\frac{3}{2}$ $\Rightarrow -1 < \frac{-3}{(x + 1)} + 2 < \frac{1}{2}$ $\Rightarrow 2 - \frac{3}{(x + 1)} < 1$

:.
$$|f(x) - \frac{1}{2}| = |x-1| \cdot |2 - \frac{3}{(x+1)}| < |x-1| \cdot | = |x-1|$$

For
$$|x-1| < \varepsilon$$
, $S = \min(\frac{1}{2}, \varepsilon)$

if
$$0 < |x-1| < S$$
, then

Hence
$$\lambda t$$
 $\frac{\chi^2 - \chi + 1}{\chi + 1} = \frac{1}{2}$

$$\lim_{x\to 0} \sin\left(\frac{1}{x^2}\right)$$

$$f(x) = \sin\left(\frac{1}{x^2}\right)$$

We will prove limit does not exist by seq. characterisation of Limits

We observe that
$$\forall$$
 $n \in \mathbb{N}$, $\sin\left(\frac{\pi}{2} + 2\pi n\right) = 1$
and $\sin\left(\frac{3\pi}{2} + 2\pi n\right) = -1$
 $\chi_{n} = \frac{1}{\sqrt{\frac{\pi}{2} + 2\pi n}}$, $y_{n} = \frac{1}{\sqrt{\frac{3\pi}{2} + 2\pi n}}$

$$\sin\left(\frac{1}{x_n^2}\right) = 1 \quad \forall \quad \chi_n , \quad \sin\left(\frac{1}{y_n^2}\right) = -1 \quad \forall \quad y_n$$

As
$$N \rightarrow \infty$$
, χ_N , $y_N \longrightarrow O$ (trivial)

However as $f(x_n) = 1$, $f(y_n) = -1$ $\forall n \in \mathbb{N}$

we get
$$f(\pi_n) \longrightarrow 1$$
 and $f(y_n) \longrightarrow -1$

This is sufficient to show that f(x) diverges $At \sin\left(\frac{1}{x^2}\right) DNE$